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The phenomenon of shelf generation by long nonlinear internal waves in stratified
flows is investigated. The problem of primary interest is the case of a uniformly
stratified Boussinesq fluid of finite depth. In analysing the transient evolution of a
finite-amplitude long-wave disturbance, the expansion procedure of Grimshaw & Yi
(1991) breaks down far downstream, and it proves expedient to follow a matched-
asymptotics procedure: the main disturbance is governed by the nonlinear theory of
Grimshaw & Yi (1991) in the ‘inner’ region, while the ‘outer’ region comprises multiple
small-amplitude fronts, or shelves, that propagate downstream and carry O(1) mass.
This picture is consistent with numerical simulations of uniformly stratified flow past
an obstacle (Lamb 1994). The case of weakly nonlinear long waves in a fluid layer
with general stratification is also examined, where it is found that shelves of fourth
order in wave amplitude are generated. Moreover, these shelves may extend both
upstream and downstream in general, and could thus lead to an upstream influence
of a type that has not been previously considered. In all cases, transience of the main
nonlinear wave disturbance is a necessary condition for the formation of shelves.

1. Introduction
The theory of waveguides provides a useful model for a variety of wave phenomena

in geophysical fluid dynamics such as the propagation of internal waves in the oceanic
thermocline. In these problems, nonlinear effects are of particular interest owing to
the possibility of permanent wave disturbances which remain coherent over large
distances and times. While there is an extensive body of prior work on nonlinear
internal waves in stratified fluids, one aspect that appears to have escaped attention
is the formation of shelves by nonlinear transient disturbances. It is precisely this
aspect that we explore in some detail here. Shelves are small-amplitude streamwise
structures of large extent and have been encountered before in studies of solitary-
wave propagation in slowly varying media (Leibovich & Randall 1973; Johnson 1973;
Newell 1985). However, as will be seen, the mechanism by which shelves are formed
in the present context is somewhat different.

In a stratified fluid layer of finite depth, the Korteweg–de Vries (KdV) equation is
central to the propagation of long internal waves with small, but not infinitesimal,
amplitude. The KdV equation combines the leading-order nonlinear and dispersive
effects for each long-wave mode and admits solitary-wave solutions with a ‘sech2’
profile. While it is possible to obtain higher-order approximations as indicated by
Benney (1966), the validity of this weakly nonlinear–weakly dispersive approach is
limited to small-amplitude disturbances. In the special case of a uniformly stratified
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(constant Brunt–Väisälä frequency) Boussinesq fluid, however, it so happens that a
linear long-wave mode is also a solution of the full nonlinear equations of motion, and
it becomes feasible to set up a nonlinear theory. Using a novel approach pioneered
by Warn (1983), Grimshaw & Yi (1991, referred to hereinafter as GY) showed that
the appropriate evolution equation, that replaces the KdV equation in this anomalous
case, is of the integral–differential type and describes long waves of finite amplitude
as long as no breaking streamlines are present in the flow field.

The flow configuration examined by GY is the main focus of the present investiga-
tion. In discussing the transient development of a finite-amplitude long-wave mode,
it becomes apparent that the asymptotic theory of GY breaks down far downstream
of the main disturbance owing to the formation of an infinite shelf; moreover, mass
is not conserved. These difficulties are handled by following a matched-asymptotics
procedure: the nonlinear theory of GY is valid in an ‘inner’ region, while the down-
stream flow defines an ‘outer’ region governed by the linear hydrostatic equations of
motion. The shelf is seen to have a large but finite extent and its structure is obtained
by matching these two regions, thereby satisfying mass conservation. The asymptotic
results are supported by the numerical work of Lamb (1994) which contains evidence
for shelf formation in uniformly stratified flow past an obstacle.

The possibility of shelf generation in a fluid layer with general stratification is then
examined in the weakly nonlinear–weakly dispersive régime. It is found that the shelf
amplitude is considerably smaller than in the fully nonlinear case. It is noteworthy,
however, that here shelves can propagate upstream of the main wave disturbance, a
feature that bears on the question of upstream influence in nonlinear stratified flow
over topography.

2. Review of long-wave theory
Consider the classical problem of internal-wave propagation in an inviscid incom-

pressible stratified fluid layer of depth h. Taking L to denote the horizontal lengthscale
of the disturbance and N0 a characteristic value of the Brunt–Väisälä frequency, we
have the following dimensionless parameters:

µ =
h

L
, β =

N2
0h

g
,

g being the gravitational acceleration. The parameter µ controls dispersive effects and
is key to the development of a long-wave theory, while the Boussinesq parameter β
provides a measure of stratification.

We shall use dimensionless variables throughout, scaling the horizontal coordinate
x with L, the vertical coordinate y with h and time t with L/(h N0). The density of
the undisturbed fluid is ρ(y) and the Brunt–Väisälä frequency N(y) is defined by the
relation

β ρ N2 = −ρy . (2.1)

For two-dimensional disturbances (independent of the spanwise direction), it is conve-
nient to introduce the streamfunction Ψ such that the horizontal and vertical velocity
components, respectively, are given by u = Ψy and v = −Ψx; thus incompressibility
is automatically satisfied. The remaining governing equations of mass conservation
and momentum balance, after eliminating the pressure, may then be cast in the form

ρt + J(ρ,Ψ ) = 0 , (2.2)
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ρ Ψyt

)
y

+
[
ρ J(Ψy,Ψ )

]
y
− 1

β
ρx = −µ2 {[ρ J(Ψx,Ψ )]x + (ρ Ψxt)x} , (2.3)

where ρ is the fluid density and J(a, b) stands for the Jacobian axby−aybx. Furthermore,
assuming the fluid layer to be bounded above and below by rigid walls, the appropriate
boundary conditions are

Ψx = 0 (y = 0, 1) . (2.4)

The significance of the parameter µ is brought out more clearly by considering the
propagation of infinitesimal long waves. Upon linearizing equations (2.2) and (2.3),
Ψ and ρ satisfy, to leading order in µ, the linear hydrostatic equations

ρt + β ρ N2 Ψx = 0 , (2.5)

β
(
ρ Ψyt

)
y
− ρx = O(µ2) . (2.6)

Equations (2.5) and (2.6), subject to the boundary conditions (2.4), admit separable
solutions of the form

Ψ = A(x± ct) φ(y) , ρ− ρ = ∓β
c
ρ N2 Ψ . (2.7)

The wave-amplitude profile A propagates with constant speed c which is determined,
along with the corresponding vertical mode shape φ(y), from the eigenvalue problem(

ρ φy
)
y

+
ρ N2

c2
φ = 0 (0 6 y 6 1) , (2.8a)

φ = 0 (y = 0, 1) ; (2.8b)

in general, there is an infinite number of eigensolutions {φn(y), cn} (n = 1, 2, . . .) which
form an orthogonal and complete set. Hence, dispersive effects are completely absent
in the long-wave limit µ → 0, and one can trace the transient development of a
general initial disturbance using superposition of the long-wave modes (2.7).

Improving on the linear hydrostatic approximation, the classical theoretical ap-
proach uses perturbation expansions to derive evolution equations for the amplitude
A(x, t) of a long-wave mode, taking into account weak nonlinear and dispersive
effects. Specifically, A satisfies the KdV equation to leading order, and one may
obtain higher-order amplitude equations following a systematic expansion procedure
(Benney 1966).

The present study is motivated by the fact that, as will be seen, long-wave ex-
pansions become non-uniform in the far field of a transient nonlinear disturbance
in a stratified fluid layer. Physically, these non-uniformities reveal the formation of
streamwise structures of large extent, termed shelves, that are essential in satisfying
mass conservation. The phenomenon of shelf generation, although it has a counter-
part in the weakly nonlinear–weakly dispersive régime (see §7), is most significant for
disturbances of finite amplitude. Accordingly, we shall first concentrate on the case of
a uniformly stratified Boussinesq fluid for which, as pointed out by GY, it is feasible
to set up a finite-amplitude long-wave theory. Moreover, there exist detailed numer-
ical simulations of this type of stratified flow past an obstacle, allowing comparison
against the analytical predictions (see §6).

In preparation for discussing the mechanism of shelf generation, we now review the
essentials of the theory of GY. In the special case of uniform Boussinesq stratification
(N = 1, β → 0), the eigenvalue problem (2.8) can be solved in closed form:

φn(y) = sin
y

cn
, cn =

1

nπ
(n = 1, 2, . . .) . (2.9)
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Furthermore, these background flow conditions imply that Long’s model is applicable,
so the governing equations for steady nonlinear flow reduce to a linear form (Long
1953). As a result, each linear long-wave mode (2.7) also satisfies the nonlinear
governing equations (2.2) and (2.3) (in the hydrostatic limit µ → 0), and this forms
the basis of the nonlinear theory of GY.

Concentrating then on a finite-amplitude long-wave disturbance of mode n, say,
that moves from right to left, the goal is to derive an evolution equation for the
wave-amplitude profile A, taking into account weak dispersive effects (µ � 1). To
this end, it is convenient to adopt a reference frame moving with speed −cn (or,
equivalently, to superimpose a uniform stream cn); the disturbance is then expected
to evolve on the slow timescale T = µ2t in this reference frame owing to the O(µ2)
dispersive corrections on the right-hand side of (2.3). Moreover, from (2.2), the density
ρ is conserved along streamlines to leading order in µ. Hence, provided no breaking
streamlines (implying overturning) are present, the vertical coordinate y may be
replaced by Ψ and, upon integration along a streamline, (2.2) yields

ρ = ρ

(
Ψ

cn

)
− µ2 ρΨ

∫ x

−∞
dx′

ΨT

Ψy

∣∣∣∣
Ψ

, (2.10)

where the subscript |Ψ indicates that Ψ is held constant.
Using (2.10), the momentum equation (2.3) may then be manipulated to the form

Ψyy +
Ψ − cn y

c2
n

= −µ2(Ψxx + R) , (2.11)

where

cn R = y
∂

∂Ψ

∫ x

−∞
dx′

ΨT

Ψy

∣∣∣∣
Ψ

− ∂

∂Ψ

∫ x

−∞
dx′y

ΨT

Ψy

∣∣∣∣
Ψ

+ cn
∂

∂Ψ

∫ x

−∞
dx′ ΨyT |Ψ . (2.12)

Following a multiple-scale perturbation procedure, the streamfunction Ψ is now
expanded according to

Ψ = Ψ (0) + µ2 Ψ (1) + · · · , (2.13)

and using (2.11) along with the boundary conditions (2.4), we find that

Ψ (0) = cny + A(x, T ) sin nπy , (2.14)

the amplitude A(x, T ) being as yet undetermined.
At the next order in µ2, Ψ (1) satisfies

Ψ (1)
yy +

Ψ (1)

c2
n

= −Ψ (0)
xx − R(0) , (2.15)

subject to the homogeneous boundary conditions (2.4), where R(0) = R(x,Ψ (0), T ).
Invoking the standard orthogonality argument – for this inhomogeneous problem to
have a solution the right-hand side of (2.15) has to be orthogonal to the corresponding
homogeneous solution sin nπy – then leads to the desired evolution equation for
A(x, T ):

K(x, x) AT +

∫ x

−∞
dx′

∂

∂x
K(x, x′) A′T − 1

2
c3
n Axxx = 0 , (2.16)

where primed variables are functions of the integration variable x′. The kernel K(x, x′)



On the generation of shelves by long nonlinear waves in stratified flows 349

is defined by

K(x, x′) = cn

∫ cn

0

dΨ yA [y′A + cn(y
′y′A)Ψ − cnyy′AΨ ] , (2.17)

where y = y(Ψ ;A) is determined by inverting the leading-order expression (2.14) for
the streamfunction Ψ = Ψ (0) + O(µ2). This inversion is possible only as long as

|A| 6 c2
n ; (2.18)

when the magnitude of A reaches the critical value of c2
n, the flow features vertical

streamlines and hence (2.18) represents a criterion for incipient breaking.
In the small-amplitude limit, |A| � c2

n, equation (2.14) can be inverted using power
series in A to obtain an analytical expression for y = y(Ψ ;A), which when inserted
into (2.17) yields the following small-amplitude expansion for the kernel:

K(x, x′) = 1− c−4
n ( 3

4
A′2 − 2AA′ + 3

4
A2) + · · · ; (2.19)

substituting (2.19) into (2.16) and making use of the fact that AT = 1
2
c3
n Axxx +O(A3)

we then obtain, correct to O(A3),

AT − 1
2
c3
n Axxx +

1

4cn
AAxAxx +

1

4cn
A2Axxx −

1

2cn
(Ax)

3 = 0 . (2.20)

As already remarked, for the background flow conditions assumed here, the equa-
tions governing steady disturbances can be cast into a linear form, consistent with the
evolution equation (2.16) where nonlinearity derives from transience only. As a result,
a quadratic KdV-like term AAx does not appear in the weakly nonlinear version
(2.20). Of course, such a term will show up if one allows for small deviations from
uniformly stratified Boussinesq flow, as explained in GY.

3. Non-uniform behaviour far downstream
Taking the wave-amplitude profile to be locally confined at T = 0, A(x, 0)→ 0

(x → ±∞), the evolution equation (2.16) ensures that A(x, T ), and hence the O(1)
disturbance in (2.14), remains locally confined for T > 0. It is important to note, how-
ever, that higher-order corrections to the flow field extend infinitely far downstream,
implying that the long-wave expansion of GY becomes non-uniform there.

Specifically, the inhomogeneous equation (2.15) governing Ψ (1) reduces far down-
stream (x→∞) to

Ψ (1)
yy +

Ψ (1)

c2
n

= −R(0)
∞ . (3.1)

But, from (2.12), the right-hand side R(0)
∞ = limx→∞ R

(0) is, in general, non-zero;
consequently, Ψ (1) features a uniform downstream shelf:

Ψ (1) ∼ Ψ (1)
∞ (y, T ) (x→∞) . (3.2)

Furthermore, proceeding to higher order, one expects the O(µ4) correction to the
streamfunction to grow linearly with x far downstream, indicating that expansion
(2.13) breaks down when x = O(µ−2). A similar non-uniformity was noted by Warn
(1983) in his study of finite-amplitude Rossby waves.

Turning attention next to the downstream density perturbation, using (2.14), ex-
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pression (2.10) in the limit x→∞ may be written, correct to O(µ2), as

ρ∞ − ρ(y) = −µ2 β

cn
(Ψ (1)
∞ + ηT ) , (3.3)

where

η =

∫ ∞
−∞
δ(A′, Ψ (0)) dx′ ,

δ = y −Ψ (0)/cn being the vertical streamline displacement associated with the O(1)
disturbance (since A is locally confined so is δ). Therefore, the density perturbation
does not vanish far downstream owing to the permanent distortion of the streamlines,
caused by Ψ (1)

∞ , and to the transient evolution of the main disturbance. From (3.1)
and (2.12), however, it is evident that the streamfunction shelf Ψ (1)

∞ is also brought
about by transient effects, so transience is solely responsible for this non-uniform
behaviour.

In particular, in the weakly nonlinear régime (|A| � c2
n),

δ ∼ −A
cn

sin
Ψ

c2
n

+
A2

2c3
n

sin
2Ψ

c2
n

+
A3

8c5
n

(
sin

Ψ

c2
n

− 3 sin
3Ψ

c2
n

)
+ · · · , (3.4)

and, making use of (2.19) and (2.20), expression (3.3) for the density perturbation far
downstream yields

cn(ρ∞ − ρ) + β µ2 Ψ (1)
∞ =

µ2β

8c5
n

(sin nπy + 3 sin 3nπy)
d

dT

∫ ∞
−∞
A3 dx+ O(A5) . (3.5)

Finally, considering a control volume extending from x = −∞ to x = ∞ and using
(3.3), one finds that the net mass flux out of the main nonlinear wave is given by

dM

dT
= −β

∫ 1

0

dy ηT , (3.6)

from which it is evident that mass is not conserved in general.
The non-uniformities noted above in the downstream flow field and the fact that

mass conservation appears to be violated are reminiscent of the difficulties encountered
previously in studies of the propagation of solitary waves in water of slowly varying
depth, described by the perturbed KdV equation (see, for example, Leibovich &
Randall 1972; Johnson 1973). In that problem, the non-uniformities behind the main
wave, where a shelf forms, can be handled by a matched-asymptotics procedure
(Kodama & Ablowitz 1981; Newell 1985) which reveals that the shelf has finite
extent. To satisfy mass conservation, however, one has to recognize the existence of a
reflected wave which moves in the direction opposite to that of the solitary wave and
is therefore not described by the perturbed KdV equation (Knickerbocker & Newell
1980; Newell 1985). In the present problem, as discussed below, the resolution of the
difficulties is somewhat more complicated owing in part to the fact that a stratified
fluid layer supports multiple modes in the vertical direction, unlike the surface-wave
problem where no such structure exists.

4. Shelf dynamics
As noted above, the long-wave expansion of GY breaks down far downstream

of the main disturbance when x = O(µ−2). This suggests introducing the rescaled
streamwise coordinate X = µ2x that will be used in describing the downstream flow
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field, following a matching procedure: the nonlinear theory of GY is valid in the
‘inner’ region x = O(1) while in the ‘outer’ region X = O(1), given that the main
disturbance is locally confined, the development of shelves downstream is expected
to be governed by the linearized equations of motion. The specification of the flow
field is completed by matching the inner and outer flows in the intermediate region
1� x� µ−2. In carrying out this programme, we shall take the main disturbance to
be of mode one (n = 1).

We begin by determining Ψ (1)
∞ from the inhomogeneous equation (3.1). Expanding

R(0)
∞ in terms of the long-wave modes (2.9), the solution of (3.1) may be written as

Ψ (1)
∞ = G1 sin πy +

∞∑
m=2

Gm

π2(m2 − 1)
sinmπy , (4.1)

where

Gm(T ) = 2

∫ 1

0

dy R(0)
∞ sinmπy (m > 2) .

We remark that even though R(0)
∞ is orthogonal to sinπy in view of the solvability

condition imposed on (2.15), it is still necessary to add a mode-1 term to Ψ (1)
∞ , the

coefficient G1(T ) being thus far undetermined. As will be seen, this term arises from
the coupling of Ψ (1)

∞ to the downstream density perturbation ρ∞ − ρ.
Using (4.1) and decomposing ηT into long-wave modes, expression (3.3) for the

downstream density perturbation then yields

ρ∞ − ρ = −µ2 β

c1

[
(G1 + P1) sin πy +

∞∑
m=2

{
Gm

π2(m2 − 1)
+ Pm

}
sinmπy

]
, (4.2)

where

Pm(T ) = 2

∫ 1

0

dy ηT sinmπy (m > 1) .

Unlike G1(T ), the coefficient P1(T ) above is known in terms of the O(1) flow. In fact,
in the small-amplitude limit, using (2.20) and (3.4) it follows that∫ 1

0

dy ηT sin πy =
1

16c5
1

d

dT

∫ ∞
−∞
A3 dx+ O(A5)

from which it is clear that P1 is non-zero in general.
We now turn our attention to the outer region,X = O(1). Since the main disturbance

is locally confined, the downstream flow perturbations are O(µ2), and we may write
the streamfunction and density in the outer region as

Ψ = c1y + µ2 ψ̂(X, y, T ) , ρ = ρ(y) + µ2 β ρ̂(X, y, T ) . (4.3)

Hence, to leading order in µ, ψ̂ and ρ̂ are governed by the linear hydrostatic
equations (2.5) and (2.6):

ρ̂T + c1 ρ̂X = −ψ̂X , (4.4)

ψ̂yyT + c1 ψ̂yyX = ρ̂X . (4.5)

In addition, from the boundary conditions (2.4), ψ̂X must vanish on y = 0, 1.
Motivated by expressions (4.1) and (4.2) obtained from the inner flow, the solution
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to the outer equations (4.4) and (4.5) is posed as

ψ̂ =

∞∑
m=1

Qm(X,T ) sinmπy , (4.6a)

ρ̂ =

∞∑
m=1

Sm(X,T ) sinmπy . (4.6b)

Thus, the boundary conditions on y = 0, 1 are automatically met and upon substitu-
tion of (4.6) into (4.4) and (4.5) it is found that for each m > 1(

∂

∂T
+ c1

∂

∂X

)
Sm = −QmX , (4.7)

(
∂

∂T
+ c+

m

∂

∂X

)(
∂

∂T
+ c−m

∂

∂X

)
Qm = 0 , (4.8a)

where

c±m = c1 ± cm . (4.8b)

Based on (4.6), (4.7) and (4.8), the downstream flow is expected to consist of pairs
of linear long-wave modes, one moving at a speed c+

m and the other at a speed c−m
relative to the main disturbance – since c1 > cm (m > 2), c±m > 0 so all modes appear
downstream (X > 0). This provides an explanation for the non-uniform behaviour,
noted in §3, of the inner flow far downstream (x � 1): the mode-1 nonlinear
wave, through a mechanism of transient self-interaction manifested in the kernel
(2.17), generates higher-mode linear long waves which travel at their own speeds.
Specifically, after a time t, the two wavefronts corresponding to the mth mode, say,
will be located at x = (c1 ± cm)t. However, since t is related to the ‘slow’ time T of
the nonlinear theory by t = T/µ2, these fronts (shelves) stretch to x = ∞ in the limit
µ→ 0. The preceding discussion also indicates that the mode-1 (m = 1) contribution
to the outer flow must be treated separately because the speed c−1 = 0 is associated
with the nonlinear disturbance.

The structure of the downstream flow is now obtained by matching the inner
and outer expressions for the streamfunction and density perturbations in the region
1� x� µ−2 (x→∞, X → 0). Specifically, from (3.2), (3.3) and (4.3), one has

ψ̂
∣∣
X→0

= Ψ (1)
∞ , (4.9a)

ρ̂
∣∣
X→0

= − 1

c1

(
Ψ (1)
∞ + ηT

)
. (4.9b)

For m 6= 1, the general solution of (4.8a) is

Qm(X,T ) = Q+
m(ξ+

m )H(ξ+
m ) + Q−m(ξ−m )H(ξ−m ) (m > 2) , (4.10a)

where H(x) is the Heaviside step function and the characteristics ξ±m are defined by

ξ±m = T − X

c±m
.

Using (4.7), we then find that

Sm(X,T ) =
1

cm

{
Q+
m(ξ+

m )H(ξ+
m )− Q−m(ξ−m )H(ξ−m )

}
(m > 2) . (4.10b)
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Employing the matching conditions (4.9) along with (4.1), (4.2) and (4.10) and
solving the resulting linear system for Q±m(T ), one has

Q±m(T ) = 1
2

{
Gm(T )

mπ2(m± 1)
∓ Pm(T )

m

}
(m > 2) . (4.11)

Turning attention now to the mode-1 contribution, (4.8a) yields for m = 1

∂

∂T

(
∂

∂T
+ 2c1

∂

∂X

)
Q1 = 0 , (4.12)

while the matching condition (4.9a) along with (4.1) require

Q1(0, T ) = G1(T ) . (4.13)

Solving (4.12) subject to the condition (4.13), we obtain

Q1(X,T ) = G1

(
T − X

2c1

)
H

(
T − X

2c1

)
.

The unknown function G1 is finally determined by imposing the matching condition
(4.9b) for the density perturbation. Specifically, making use of (4.7) for m = 1 and
from (4.1) and (4.2), one has

G1 = − 1
2
P1 .

Hence, the streamwise structure of the mode-1 shelf is given by

Q1(X,T ) = − 1
2
P1

(
T − X

2c1

)
H

(
T − X

2c1

)
, (4.14a)

S1(X,T ) = − 1

2c1

P1

(
T − X

2c1

)
H

(
T − X

2c1

)
. (4.14b)

Equations (4.6), (4.10), (4.13) and (4.14), combined with (4.1) and (4.2), determine
the downstream flow completely. While these results have been derived assuming a
mode-1 nonlinear wave, the main conclusions are still valid when the nonlinear wave
is of mode n > 1. In this case, multiple shelves comprising linear long waves of mode
n, 2n, 3n, . . . are generated and, since cm ∝ m−1, all these waves appear exclusively on
the downstream side of the nonlinear wave. We also remark that the discontinuous
behaviour at X = c±mT of the shelves described by (4.10) and (4.14) indicates that
dispersive effects are significant there and will act to smooth out the discontinuity,
as demonstrated by Kodama & Ablowitz (1981) in the analogous problem of the
perturbed KdV equation.

5. Mass conservation
We now verify that the downstream flow discussed above is consistent with mass

conservation in the entire flow field.
Using (4.2) expression (3.6) for the net mass flux out of the main disturbance may

be written as

dM

dT
= −2β

∞∑
n=0

P2n+1

(2n+ 1)π
. (5.1)

On the other hand, from (4.6b) and (4.10b), the excess mass Mm(T ) in the shelf of
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mode m > 1 is given by

Mm(T ) = β(1− cosmπ)

[∫ c+
mT

0

dX Q+
m(ξ+

m )−
∫ c−mT

0

dX Q−m(ξ−m )

]
;

hence, upon differentiating with respect to T , the rate of change of mass within the
mode-m shelf is

dMm

dT
= β(1− cosmπ)

{
c+
m Q

+
m(T )− c−m Q−m(T )

}
(m > 1) . (5.2a)

Likewise, using (4.14b), the rate of change of mass contained in the mode-1 shelf is
found to be

dM1

dT
= −2β c1 P1(T ) . (5.2b)

The rate of change of the total mass of the outer flow is then calculated by summing
the expressions in (5.2a, b) over m:

dM

dT
= −2β c1 P1(T ) + 2β

∞∑
n=1

{
c+

2n+1 Q
+
2n+1(T )− c−2n+1 Q

−
2n+1(T )

}
. (5.3)

Making use of (4.11), however, (5.3) reduces to

dM

dT
= −2β

∞∑
n=0

P2n+1

π(2n+ 1)
,

which is precisely the mass flux out of the main nonlinear disturbance in (5.1).
Therefore, the mass that leaves the nonlinear wave balances exactly that required to
create the shelves downstream.

From the analysis of the outer flow in §4, it is clear that the downstream disturbance,
even though it has O(µ2) amplitude, carries O(1) mass as it extends to x = O(µ−2) at
T = O(1). On the other hand, since the energy density is proportional to the square
of the wave amplitude, the energy content of the shelves is O(µ2) and energy, unlike
mass, is conserved to leading order.

These results bear on the recent work of Prasad, Ramirez & Akylas (1996) who
studied the generation of internal-wave disturbances by uniformly stratified Boussi-
nesq flow of infinite depth over finite-amplitude topography. In this flow configuration
following a similar matching procedure, it can be shown that shelves of small ampli-
tude also appear downstream. Owing to the absence of a physical upper boundary,
however, it turns out that the mass flux out of the main disturbance vanishes to
leading order, so both the mass and the energy of the nonlinear wave are conserved
(Prasad 1997). In fact, energy conservation proves helpful in interpreting the modu-
lational instability of finite-amplitude steady-flow states, as discussed in Prasad et al.
(1996).

6. Comparison with numerical results
It would be valuable to have confirmation of the predictions of the asymptotic

theory from numerical simulations of nonlinear internal waves. For this purpose, we
now examine shelf formation in a slightly different context where comparison with
prior numerical work is feasible, at least qualitatively.
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Specifically, we shall consider internal waves generated under resonance conditions
by uniformly stratified Boussinesq flow of finite depth past bottom topography.
Resonance occurs when the speed of the background flow V is close to one of the
linear long-wave speeds cn (n = 1, 2, . . .),

V = cn(1 + µ2λ) , λ = O(1) ,

in which case a nonlinear mode-n wave disturbance of O(1) amplitude is induced by
small-amplitude topography, as explained in GY. The long-wave parameter µ� 1 is
now defined as h/W , where W is the characteristic width of the obstacle, and the
shape of the obstacle is given by y = εf(x), ε� 1 being the ratio of the peak obstacle
amplitude to the fluid depth h.

Following the procedure outlined in §2, taking ε = µ2, the wave-amplitude profile
of the resonant mode is governed by the forced analogue of the evolution equation
(2.16):

K(x, x)AT +

∫ x

−∞
dx′KxA

′
T + λcnAx − 1

2
c3
nAxxx + cn

[
(c2
n + A)f

]
x

= 0 . (6.1)

Observing that the formulation of GY was based on the vertical particle displacement
rather than the streamfunction used in §2, the evolution equation (6.1) reduces to (4.3)
of GY (in the special case of a uniform Boussinesq stratification) upon replacing A
with −A/cn and appropriately rescaling T , f and λ.

Numerical solutions of (6.1) reveal the existence of a finite range of the resonance-
detuning parameter λ over which a steady state is not reached; rather, the flow
continues to evolve until wave breaking occurs and the formulation leading to (6.1)
ceases to be valid. Based on our earlier finding that flow transience results in the
generation of downstream shelves, without repeating the analysis of §4, it follows that
the far wake of the obstacle is composed of all harmonics m = pn (p = 1, 2, . . .) of
the resonant mode n, forming multiple shelves of O(µ2) amplitude. Furthermore, one
expects the two fronts associated with the mode-m shelves to propagate downstream
with speeds V ± cm.

The forced generation of internal waves in a uniformly stratified Boussinesq fluid
layer has also been the focus of recent numerical investigations based on the full
Navier–Stokes equations (Hanazaki 1992, 1993) or the inviscid equations of motion
(Lamb 1994; Rottman, Broutman & Grimshaw 1996). With the exception of Lamb
(1994), however, only the resonant-mode response is presented in these studies, pre-
cluding comparison with the multiple-shelf structure predicted by the asymptotic
theory. The downstream boundary of the computational domain also was placed
fairly close to the obstacle so the shelf of the resonant mode, which possesses the
fastest travelling front, would exit the computational domain very rapidly. In addition,
it is likely that the sponge layer used at the downstream boundary in the simulations
of Rottman et al. (1996) would act to dissipate this shelf.

For these reasons, it was decided to concentrate on the simulations discussed by
Lamb (1994) for the algebraic mountain (Witch of Agnesi), in particular the case
described in terms of his amplitude and width parameters by a = 0.13, D = 0.17. The
upstream conditions are such that V = 0.826c1, implying a flow close to a mode-1
resonance. Switching to the dimensionless variables defined here, these flow conditions
correspond to ε = µ2 = 0.13 so λ = −1.34 and the obstacle profile in (6.1) is given by

f =
1

1 + 267x2
. (6.2)
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Figure 1. The results of the numerical simulations of Lamb (1994) at T = 5.3, showing the
(a) mode-1, (b) mode-2 and (c) mode-3 waves. The theoretical locations of the shelf fronts are
designated by the broken lines.

In presenting his results, Lamb (1994) employs a modal decomposition of the
streamwise velocity which far downstream reduces to

u = V +

∞∑
m=1

Um cosmπy. (6.3)
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Figure 2. Shelf structure corresponding to the first three modes at the onset of wave breaking
(T = 0.4), as predicted by the asymptotic theory. The lines represent respectively U1 (——), U+

2 (—
—), U−2 (— · · —), U+

3 (- - - - ) and U−3 (— · — ·). The abscissa is the outer coordinate X = µ2x.

The spatial and temporal developments of the modal amplitudes U1 and U2 are
illustrated in figure 9 of Lamb (1994). These amplitudes as well as the mode-3
response U3, which has been kindly provided to us by Dr Lamb, are plotted in figure
1 in terms of the outer coordinate X at T = 5.3 (corresponding to his t = 30).
The obstacle is centred at X = 0 and has a streamwise extent −0.1 <∼ X <∼ 0.1.
Furthermore, since V is known, the speeds of the shelf fronts are readily obtained,
and the positions of these fronts at T = 5.3 are denoted in figure 1 by the broken
lines. The mode-1 response U1 in figure 1(a), consists of a large-amplitude wave above
the obstacle, followed by a train of decaying lee waves. In addition, a small-amplitude
disturbance is observed to form well beyond the lee wavetrain, at a position close to
that of the mode-1 shelf. Turning now to figure 1(b, c), it is evident that U2 and U3 are
each composed of two more or less separate disturbances that extend roughly to the
positions of the shelf fronts Q+

m and Q−m (m = 2, 3) predicted by the asymptotic theory.
While one might attribute the far-field disturbances in figure 1 to linear transients
that are generated by the nearly impulsive startup of the flow, this interpretation is
not supported by the sustained generation of higher-mode waves seen in figure 1(b, c)
and in figure 9(d, f) of Lamb (1994), reinforcing the view that the observed far-field
disturbances are actually shelves.

In an attempt to make a more detailed comparison between the asymptotic and
numerical results, we next use the asymptotic theory to determine the response under
the flow conditions considered in Lamb (1994) by numerically solving (6.1) subject
to the forcing (6.2) for n = 1 and λ = −1.34. Wave breaking is found to occur at
T = 0.4, which compares poorly with the value of T ≈ 5 reported in Lamb (1994).
This is not surprising since the forcing (6.2) is quite narrow so dispersive effects are
not properly accounted for by the asymptotic theory. Consequently, the errors in
estimating the shelf amplitudes are expected to be significant and comparison with
the data of Lamb (1994) can only be qualitative, at best. From the known evolution of
the resonant-wave amplitude, the structure of the shelves is then determined following
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the methodology of §4. To facilitate comparison with Lamb (1994), the shelves are
expressed in terms of the streamwise velocity rather than the streamfunction; with
the notation of (6.3), we find from (4.3), (4.6a) and (4.10a) that

U1 = µ2πQ1, Um = U−mH(T −X/c−m) +U+
mH(T −X/c+

m) (m > 2) ,

where

U±m = µ2mπQ±m (m > 2) .

In particular, the amplitudes U1, U
±
2 and U±3 of the shelves corresponding to the

first three modes are depicted in figure 2 at the onset of breaking. Despite the order-
of-magnitude difference between the predicted values in figure 2 and the computed
amplitudes in figure 1, certain qualitative similarities are apparent. Specifically, we
observe that in both cases the ‘fast’ shelf components U+

m are significantly smaller
in magnitude than their ‘slow’ counterparts U−m , and the slowest of all shelves, U−2 ,
appears to be the dominant one. As pointed out earlier, the large error in estimating
the shelf amplitudes is attributed to the fact that the obstacle profile (6.2) is far
from hydrostatic; the agreement is likely to improve when a wider forcing is used, as
assumed in the asymptotic theory.

7. Weakly nonlinear–weakly dispersive régime
The generation of shelves by finite-amplitude internal waves so far has been

analysed in the context of a uniformly stratified Boussinesq fluid, when the nonlinear
theory of GY is valid. It is natural, therefore, to ask whether similar phenomena can
occur under more general flow conditions. Here we take up this question and consider
internal waves in a fluid layer with arbitrary (stable) stratification. While no finite-
amplitude theory is available in this setting, it will be shown based on the expansion
procedure of Benney (1966) that the transient evolution of wave disturbances in the
weakly nonlinear–weakly dispersive régime is indeed accompanied by shelves which,
in general, appear both upstream and downstream.

To this end, returning to the formulation of §2, we now consider a mode-n long-
wave disturbance of small amplitude ε � 1, propagating from right to left along a
fluid layer with general stratification. Adopting a reference frame translating with the
corresponding linear long-wave speed −cn, it is convenient to write

Ψ = cny + εψ , ρ = ρ(y) + εq , (7.1)

and work with ψ and q, the streamfunction and density perturbations, respectively.
Assuming the traditional KdV balance ε = µ2, the disturbance then evolves on the
slow timescale T = εt, and the governing equations (2.2) and (2.3) take the form

cnqx − ρyψx = ε [J(ψ, q)− qT ] , (7.2)

cn
(
ρψyx

)
y
− qx

β
= −ε

{
cnρψxxx +

(
ρψyT

)
y

+
[
ρJ(ψy, ψ) + cnqψyx

]
y

}
− ε2

{[
qJ(ψy, ψ) + qψyT

]
y

+ cnqψxxx + [ρJ(ψx, ψ)]x

}
+ ε3 [qJ(ψ, ψx)]x . (7.3)

In addition, the boundary conditions (2.4) become

ψx = 0 (y = 0, 1) . (7.4)
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Following Benney (1966), we now expand

ψ = ψ(0) + εψ(1) + ε2ψ(2) + · · · , (7.5a)

q = q(0) + εq(1) + ε2q(2) + · · · , (7.5b)

the leading-order solution corresponding to a long wave of mode n as defined by (2.7)
and (2.8):

ψ(0) = aφn(y) , q(0) =
a

cn
ρyφn(y) . (7.5c)

Furthermore, the amplitude a(x, T ) is constrained to satisfy an evolution equation of
the form

aT = 2raax + saxxx + ε
[
α1(a

3)x + α2aaxxx + α3axaxx + α4axxxxx
]

+ ε2
[
γ1(a

4)x + γ2a
2axxx + γ3aaxaxx + γ4a

3
x + γ5aaxxxxx

+ γ6axaxxxx + γ7axxaxxx + γ8axxxxxxx] + O(ε3) . (7.6)

To determine the constants r, s, α1, . . . , α4 and γ1, . . . , γ8, it is necessary to solve for the
higher-order corrections ψ(1), q(1), etc. in (7.5), as explained in Benney (1996).

For our purposes, it is important to note that solutions of equation (7.6), like those
of the integral–differential evolution equation (2.16) discussed earlier, remain locally
confined. This indicates that the appearance of shelves, if any, must be reflected in
the higher-order corrections to ψ(0) and q(0) in (7.5). In fact, as it turns out, one has to
carry the perturbation theory to O(ε3) in order to detect the presence of shelves, and,
to avoid heavy algebraic manipulations, here we shall only sketch the main steps in
the analysis (see Prasad 1997 for further details).

Briefly, it follows from (7.2)–(7.5) that the O(ε) corrections ψ(1) and q(1) take the
separable form

ψ(1) = a2φ(1,0) + axxφ
(0,1) , (7.7a)

q(1) = a2q(1,0) + axxq
(0,1) , (7.7b)

where

q(1,0) =
ρy

cn
φ(1,0) +

1

2c2
n

ρyyφ
2
n −

r

c2
n

ρyφn , (7.7c)

q(0,1) =
ρy

cn
φ(0,1) − s

c2
n

ρyφn , (7.7d)

and φ(1,0)(y), φ(0,1)(y) satisfy certain inhomogeneous boundary-value problems (Benney
1966). Imposing solvability conditions on these problems determines the constants r
and s:

r = − 3

4I

∫ 1

0

dy ρφ3
ny , s =

cn

2I

∫ 1

0

dy ρφ2
n , (7.8)

where I =
∫ 1

0
dy ρφ2

ny .

Proceeding to O(ε2), we write

ψ(2) = a3φ(2,0) + aaxxφ
(1,1)
1 + a2

xφ
(1,1)
2 + axxxxφ

(0,2) , (7.9a)

q(2) = a3q(2,0) + aaxxq
(1,1)
1 + a2

xq
(1,1)
2 + axxxxq

(0,2) , (7.9b)

where q(2,0), . . . , q(0,2) can be expressed in terms of φ(2,0), . . . , φ(0,2) and the known
lower-order solutions. As before, φ(2,0)(y), . . . , φ(0,2)(y) satisfy certain inhomogeneous
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boundary-value problems, the solvability conditions of which specify the four con-
stants α1, . . . , α4.

Thus far, there is no indication of shelf formation since ψ and q remain locally
confined to O(ε2) according to (7.7) and (7.9). Returning to (7.2), however, and
integrating over x, we find upon using (7.6), (7.7) and (7.9) that

cnq − ρyψ |∞−∞ = ε3P

∫ ∞
−∞

dx a3
x + O(ε4) , (7.10)

where

P (y) =
[
φn

(
q

(1,1)
2 − 1

2
q

(1,1)
1

)
+ φ(0,1)q(1,0) − φ(1,0)q(0,1)

]
y
− 1

cn

(
γ2 − 1

2
γ3 + γ4

)
ρyφn

+
1

cn
ρy

[
φn

(
1
2
φ

(1,1)
1 − φ(1,1)

2

)]
y
− 3sq(2,0) − 2r

(
q

(1,1)
2 − q(1,1)

1

)
. (7.11)

Equation (7.10) reveals the presence of shelves since the integral on the right-hand
side is not zero in general. Using (7.1), (7.6) and with the rescaling A = εa, (7.10) can
in fact be brought to a form analogous to (3.5):

cn(ρ− ρ)− ρyΨ |∞−∞ =
εP

3s

d

dT

∫ ∞
−∞

dx A3 , (7.12)

from which it is clear that shelves appear only when the flow is transient and
are generated by nonlinear self-interaction of the main wave disturbance, the same
mechanism as in a uniformly stratified Boussinesq fluid. In contrast to (3.5), however,
one expects, in general, the vertical structure P (y) in (7.11) to contain contributions
from all long-wave modes φm(y) (m = 1, 2, . . .). This implies that the shelves associated
with modes having speed cm > cn would propagate both upstream (since c−m = cn−cm <
0) and downstream (since c+

m = cn + cm > 0), while those shelves corresponding to
modes with speed cm < cn (for which c±m > 0) would only appear downstream of the
main wave.

Obtaining further information about the structure of shelves requires numerical
solution of the boundary-value problems governing the O(ε) and O(ε2) flow corrections
in (7.7) and (7.9). In the special case of a uniformly stratified Boussinesq fluid, ρy = −β,
however, these problems can be solved in closed form, and it is easy to check that
the results of the present formulation are consistent with those obtained earlier in the
small-amplitude limit.

Specifically, from (2.9), φn = sin nπy so r = 0 and s = 1
2
c3
n according to (7.8). At

O(ε) then φ(1,0) = φ(0,1) = 0 so, from (7.7c, d), q(1,0) = 0, q(0,1) = 1
2
βcn sin nπy. Solvability

conditions at O(ε2) yield α1 = α2 = α3 = 0, α4 = 1
8
c4
n, with the result that

φ(2,0) = 0 , φ
(1,1)
1 = 1

4
sin 2nπy , φ

(1,1)
2 = − 1

4
sin 2nπy , (7.13a)

and

q(2,0) = 0 , q
(1,1)
1 = − β

2cn
sin 2nπy , q

(1,1)
2 =

β

2cn
sin 2nπy . (7.13b)

Proceeding then to O(ε3), it is readily shown that γ1 = γ5 = γ6 = γ7 = 0 and

γ2 = γ3 = − 1

4cn
, γ4 =

1

2cn
, γ8 = − c

8
n

32
. (7.14)
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The evolution equation (7.6) hence reduces to

aT − 1
2
c3
naxxx − 1

8
εc4

naxxxxx +
ε2

4cn
a2axxx +

ε2

4cn
aaxaxx −

ε2

2cn
(ax)

3 + 1
32
ε2c8

naxxxxxxx = 0,

which, upon rescaling A = εa, agrees with (2.20), except for the higher-order dispersive
terms. This discrepancy is not surprising because the theory of GY only accounts for
the leading effects of dispersion.

Finally, inserting (7.13) and (7.14) into (7.11), (7.12) becomes

cn(ρ− ρ) + βΨ
∣∣∣∞
−∞

=
εβ

8c5
n

(sin nπy + 3 sin 3nπy)
d

dT

∫ ∞
−∞

dx A3 ,

in agreement with (3.5). Of course, the lower limit of the left-hand side in the above
expression vanishes because, as noted in §4, no shelves can propagate upstream in the
case of a uniform Boussinesq stratification which, in this regard, is exceptional.

8. Discussion
The present investigation has addressed the problem of shelf formation in the

context of internal waves in stratified flows. For fully nonlinear long waves in a
uniformly stratified fluid of finite depth, it was pointed out that a downstream shelf
of small amplitude exists when the flow is unsteady, which renders the nonlinear
theory of GY invalid far downstream and causes a net efflux of mass. While this
was not accounted for by GY, it does not alter the results obtained therein, which
pertain to the near-field response. The downstream flow must be treated separately
since the scales of the nonlinear theory no longer apply. Using a matching procedure,
the downstream disturbance is found to consist of pairs of linear modes propagating
at their linear long-wave speeds, and mass conservation is verified.

Physically, the presence of shelves in the downstream flow implies the existence of
columnar disturbances with a high degree of spatial and temporal persistence. To the
extent that the theory of GY may be regarded as a prototype for other finite-amplitude
long-wave systems, one may also expect shelves to accompany transient nonlinear
disturbances in a fluid layer with arbitrary stratification. In fact, our analysis in the
weakly nonlinear–weakly dispersive régime indicates that shelves of fourth order in
amplitude are formed. Moreover, these shelves contain components that propagate
upstream of the main wave, revealing a type of upstream influence that has not been
previously considered.

The question of upstream influence has been investigated theoretically by, among
others, McIntyre (1972) in non-resonant uniformly stratified Boussinesq flow of
finite depth over weakly nonlinear topography. By solving the transient problem
using a perturbation expansion in terms of the topography amplitude parameter ε,
McIntyre (1972) demonstrated that upstream-propagating disturbances of O(ε2) may
be generated by nonlinear interactions of the transient lee-wave ‘tails’. In contrast, the
shelves discussed here have O(ε4) amplitude in the weakly nonlinear–weakly dispersive
régime, and are caused by transience of the main nonlinear long-wave disturbance.
Parenthetically, we observe that in the case of a uniform Boussinesq stratification,
considered by McIntyre (1972), no upstream shelves are predicted by the present
theory.

Finally, we note that although the shelves discussed here are asymptotically small,
they can be significant for narrow obstacles of finite amplitude, as illustrated by
the simulations of Lamb (1994). In geophysical flows, these shelves would act to
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enhance momentum transport, thereby increasing the drag force on the obstacle
and altering, for example, the temperature distribution. In addition, their presence
implies reduced towing times in tank experiments compared with values that might
be anticipated based on linear theory, and bears on the implementation of suitable
boundary conditions at the upstream and downstream edges of the computational
domain in numerical simulations.

The authors wish to thank Dr Kevin G. Lamb for making available the results of
his simulations shown in figure 1. This work was supported in part by the National
Science Foundation Grant DMS-9404673 and the Air Force Office of Scientific
Research Grant F49620-92-J-0086.
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